Newsroom / Press release

Quandela’s first  quantum computer manufacturing facility!

It is with immense pride and gratitude that we share the remarkable milestone we have achieved with the successful inauguration of Quandela’s first-ever Quantum Computing Factory on June 20th, in presence of French Minister of Digital Transition and Telecommunications Jean-Noël Barrot, Nicolas Dufourcq CEO of Bpifrance and Alain Aspect, 2022 Nobel Prize in Physics and…

Paris, June 26 st , 2023. Quandela, leader in optical quantum computing, has just inaugurated its first factory for manufacturing quantum computers in Massy (Essonne, France). The grand opening took place on June 20th , 2023, in the presence of Jean-Noël Barrot, Minister for Digital Transition and Telecommunications, Nicolas Dufourcq, CEO of Bpifrance, and Alain Aspect, 2022 Nobel Prize laureate in Physics and member of Quandela’s scientific board. It marks a major milestone for the company as it embarks on its industrialization phase.

The opening represents a remarkable achievement for Quandela and positions the company at the forefront of the quantum computing industry. With its new production capabilities and stringent quality processes, the company is equipped to meet industrygrade standards.

Quandela, the first actor in the European Union – and to date one of the global few – to make its quantum computers publicly available on the cloud, continues to push boundaries. In the coming months, Quandela will deploy two additional quantum computers on the cloud and will be expanding its portfolio of cloud-based quantum solutions.

Thanks to its new factory, Quandela will be able to scale up its production and supply quantum computers, both for on-premise sales and for its quantum cloud platform, enabling increasing number of industrial players to leverage this technology for addressing industrial use cases.

“Having released our first generation of quantum computers on the cloud, the next logical step for Quandela was to move towards the industrialization of these computers. Thanks to this factory, located on the doorstep of the Plateau de Saclay, we are confident in tackling the upcoming challenges to further increase the computational capabilities of our computers and the number of industrial applications.” Valérian Giesz, co-founder and CEO of Quandela.

” I’m delighted to announce that Quandela is laureate of the France 2030 “Première Usine” call for projects, operated by Bpifrance. The company, now a major European player in photonic quantum computing, perfectly embodies our strategy of reindustrialization, based on support for innovative technologies developed by startups and industrial SMEs. This CNRS spin-out has made the transition from the laboratory to the factory over a period of 5 years, with Bpifrance providing support on 8 occasions as the project developed. It’s the perfect example of the deeptech continuum we’ve been creating in France since 2019.” Nicolas Dufourcq, CEO of Bpifrance.

“The inauguration of this first quantum computer factory marks Quandela’s scaling-up from fundamental research to industrialization. Through various programs such as FT2030 and the France 2030 “Première Usine”, the French government is supporting Quandela at every stage of its development, in particular through a €9.5 million grant. We’re very proud to have such high-quality researchers and entrepreneurs in France, who will help us make France a deeptech nation.” Jean-Noël Barrot, Minister for Digital Transition and Telecommunications.

Finally, in line with its technological roadmap, this new factory will also enable Quandela to develop more powerful quantum computers for its customers. In addition to the factory inaugurated today, Quandela is finalizing the installation of its cleanroom on the Plateau de Saclay, where semiconductor components for photonic qubit generation are produced.

This new milestone confirms Quandela’s leading position in photonic quantum computing in Europe.

About Quandela

Quandela, entreprise leader dans le domaine du calcul quantique, propose des solutions de niveau industriel. Quandela conçoit, construit et fournit des systèmes quantiques prêts à l’emploi pour les datacenters, des processeurs quantiques accessibles via le cloud, et des services d’accès aux algorithmes.
Fondée en 2017 par la professeure Pascale Senellart, directrice de recherche au Centre de nanosciences et nanotechnologies (C2N) du CNRS, Niccolo Somaschi et Valérian Giesz, experts de renommée internationale en physique quantique, Quandela emploie plus de 100 collaborateurs de 20 nationalités différentes, en majorité des chercheurs et des ingénieurs en optique, algorithmes et sciences de l’information.
Quandela s’engage à rendre l’informatique quantique accessible à tous pour relever les défis industriels et sociétaux les plus complexes.
Pour en savoir plus : www.quandela.com

GB
Quandela, a leader in quantum computing, specializes in industry-grade quantum computing solutions. Quandela designs, builds, and supplies datacenter-ready quantum computing systems, cloud-accessible quantum processors, and algorithm with industrial value.
Founded in 2017 by Professor Pascale Senellart, Research Director at the Centre for Nanosciences and Nanotechnologies (C2N) at CNRS, Niccolo Somaschi and Valerian Giesz, internationally renowned experts in quantum physics, Quandela currently has over 100 employees from 20 different nationalities, mostly researchers and engineers in optical, algorithm and data science.
Quandela is committed to making advanced quantum computing accessible and beneficial for all, empowering innovators to solve the most complex industrial and societal challenges.

About France 2030

The France 2030 investment plan: – Has two ambitions: transforming key sectors of our economy for the long term (healthcare, energy, automotive, aerospace and space) through technological innovation, and positioning France not just as a participant but as a leader of tomorrow’s world. France 2030 supports the whole innovation life cycle through to industrialization: from carrying out fundamental research and fostering new ideas to producing a new product or service.

– Is unprecedented in terms of scale: €54 billion will be invested to help our companies, universities and research organizations achieve successful transitions in these strategic sectors. The aim is to provide a competitive response to the challenges posed by tomorrow’s world in terms of the environment and economic attractiveness, and to bring through future champions in the sectors in which we excel. France 2030 is defined by two cross-cutting targets, allocating 50% of its expenditure to decarbonizing the economy and 50% to funding emerging innovators without carrying out any environmentally damaging expenditure (in line with the “Do No Significant Harm” principle).

– Will be implemented collectively: designed and deployed in conjunction with economic, academic, local and European participants, which will help determine its strategy and key initiatives. To receive state support, entities developing projects are invited to submit applications via procedures that are open, demanding and selective.

– Is overseen by France’s Office of the Secretary General for Investment, on behalf of the Prime Minister.

Explore More

Read more

EuroQCS-France: remote access to a 12-qubit Quandela system is now available for European users!

×

The EuroQCS-France consortium, led by GENCI and CEA, is pleased to announce that European researchers can now access a 12-qubit Quandela photonic quantum computing system remotely. This exciting development allows European users to begin programming and testing their applications on a real photonic quantum computer, months ahead of the anticipated deployment at TGCC (CEA’s computing center) of the on-premise Lucy system in the end of 2025. They can be supported by experts from a High-Level Support Team to port their applications onto the photonic quantum computer.

The EuroQCS-France consortium and the selection of Quandela as supplier by the EuroHPC Joint Undertaking (JU)

In 2024, EuroHPC JU selected a consortium formed by Quandela and its German partner attocube systems AG as the supplier of the photonic quantum computing technology as part of the EuroQCS-France initiative. This collaboration is set to pave the way for a new era in quantum computing across Europe, enhancing research capabilities and advancing the quantum ecosystem.

In November 2024, on the occasion of SC24, EuroQCS-France officially announced the provision of early remote access to a 6-qubit Quandela photonic quantum computer for the European open research community. Now, users will be able to run their code on a remote 12-qubit quantum computer, with the same design as the upcoming Lucy system. This provides a unique opportunity to engage with a photonic quantum computer, allowing open research communities to get hands-on experience before the Lucy system is fully installed and operational at TGCC in 2025.

Key Benefits for European Researchers

· Early Access: Open research communities can begin preparing their code using Perceval now, the Quandela programming and emulation environment deployed on the Joliot-Curie supercomputer, and run their applications on a remote 12-qubit photonic quantum computer similar to the targeted Lucy system.

· No Wait for Deployment: Users will not have to wait for the installation of Lucy to access a real quantum computing system, allowing them to start experimenting and testing their applications immediately.

· Expert Support: A High-Level Support Team will assist users in porting their applications onto the photonic quantum computer, ensuring that researchers can fully leverage the technology.

· Training Sessions: GENCI/CEA and Quandela will be offering specialized training on hybrid HPC-QC programming schemes, helping users prepare for the integration of Lucy with Joliot-Curie.

How to Access the Remote System

The process to access the remote Quandela system will be outlined by CEA, and interested researchers can apply for access through the designated channels. More details will be provided shortly.

Looking Ahead

EuroQCS-France is part of the broader European effort to build a diverse, pan-European hybrid HPC/QC infrastructure. Lucy, the 12-qubit photonic quantum computer, will soon join other cutting-edge quantum systems across Europe, each based on different hardware technologies. These systems include scalable superconducting qubits (Euro-Q-Exa), star-shaped superconducting qubits (LUMI-Q), trapped ions (EuroQCS-Poland), quantum annealing (EuroQCS-Spain), neutral atoms (EuroQCS-Italy), each system providing unique capabilities and research opportunities.

In the coming months, as the Lucy system’s deployment approaches, this early access will be crucial in ensuring that European researchers are well-prepared to take full advantage of the system’s capabilities.

GENCI/CEA and Quandela will be organizing training sessions on hybrid HPC-QC programming schemes leveraging photonic quantum computing to anticipate the integration of Lucy with Joliot-Curie.

About EuroQCS-France

EuroQCS-France is a consortium led by GENCI as Hosting Entity and CEA as Hosting Site, with the University Politechnica of Bucharest (UPB, Romania), Forschungszentrum Juelich (FZJ, Germany) and Irish Centre for High-End Computing (ICHEC, Ireland), selected by EuroHPC JU in 2022 as a result of the call for expression of interest EUROHPC-2022-CEI-QC-01.

EuroQCS-France aims to provide European open research communities with access to a photonic quantum computer coupled with the Joliot-Curie supercomputer, just like the 100-qubit Pasqal quantum simulator Ruby, acquired in the context of the HPCQS project.

Read more

Quandela announces a 100,000-fold reduction in the number of components needed for fault-tolerant calculations, a major breakthrough for photonic quantum computing 

×

_______________________________________________________________________________ 

Paris, February 7, 2025 – Quandela, the European leader in photonic quantum computing, announces a major breakthrough for the sector in a scientific paper1 describing a reduction by a factor of 100,000 in the number of components required for fault-tolerant calculations. Quandela’s hybrid approach, based on a technology that generates photonic qubits with unprecedented efficiency from artificial atoms (semiconductor quantum emitters), should enable the company to accelerate the scaling-up of its quantum computers. 

A photonic approach promising for error-correction and scaling challenges 

Fault-tolerant – error-free – quantum computing is crucial for the correct execution of the most impactful quantum algorithms, such as prime number factorization, linear system solving and chemical simulations. It is these algorithms that enable the most valuable use cases that “classical” computers cannot solve, notably in the energy, pharmaceutical, chemical and defense sectors. 

Among all quantum platforms, the photonic platform appears particularly promising for achieving fault tolerance, thanks to the unique ability of photons to :  

  • carry quantum information almost infinitely 
  • interconnect quantum processors via commercial optical fibers, as is the case with today’s largest network-connected computers.  

Interconnection between quantum processors is essential, in the long term, to extend the computing power of quantum computers – in a similar way to today’s networked supercomputers – whatever the platform in question. Photonic technology therefore inherently possesses the modularity that is absolutely essential for scaling up and implementing error-correction protocols. 

However, since photon loss is the main source of error in the photonic approach, the high performance of these quantum computers implies high optical transmission of the components, i.e. a high flow of photons through all the components. The big challenge is therefore to reduce the number of components (“resources”) in order to achieve the high optical transmission needed to manipulate and correct a large number of qubits, and thus achieve the high-impact calculations that outperform conventional computers. 

Quandela’s approach 100,000x less resource-intensive than other photonic competitors 

To meet this challenge, Quandela has just reported a groundbreaking scientific result that presents a method for reducing resource requirements by a factor of 100,000 compared with the photonics-only approach adopted and developed by other photonic quantum computing players in the USA and Canada.  

At the heart of this result lies the core technology of Quandela’s processors, based on semiconductor quantum emitters that generate photonic qubits with world-leading efficiency. Thanks to its hybrid approach, which uses these emitters both as photon generators and as qubits (by exploiting the spin of one of the emitter’s electrons), Quandela sets itself apart from other photonic competitors.  

Where a purely photonic approach would require around a million components to generate one logic qubit, the research team, led by Quandela’s Chief Research Officer Shane Mansfield, demonstrates that Quandela’s approach requires just 12, i.e. 100,000 (= 10^5 times ) less. This approach also greatly relaxes the optical transmission requirements of the components, and therefore the performance required for error correction. 

Significant reduction in energy consumption 

This considerable gain, which promises to reach the error-correction regime much more quickly, also makes it possible to drastically reduce the platform’s manufacturing costs and energy consumption. Quandela predicts a much lower power consumption than existing quantum platforms. In practice, while today’s large-scale high-performance computing centers consume around 20 MW, and cloud hyperscalers dedicated to AI require around 2 MW, Quandela’s largest quantum computer should keep its power consumption below 1MW. Quandela’s computers are therefore positioned as the solution for increasing the computing power needed by industry worldwide, without increasing energy consumption. 

“This breakthrough marks an important milestone for error-correcting computing with the photonic platform. By drastically reducing the resources required while maintaining the intrinsic advantages of the photonic approach, we are paving the way for the realistic industrialization of fault-tolerant quantum computing. Our unique hybrid approach demonstrates Quandela’s ability to significantly accelerate the scale-up of quantum computers, a crucial issue for the entire industry”, comments Niccolo Somaschi, co-founder and CEO of Quandela. 

Read more

Quandela Named Among Systematic Paris-Region’s 2024 Deep Tech Champions

×

Quandela has been selected as one of the five Deep Tech Champions 2024 by Systematic Paris-Region, France’s largest deep technology cluster. The company joins fellow champions Probabl (Open Source & AI), Scalinx (Semiconductors), Sekoia.io (Cybersecurity), and Uavia (Drones) in this prestigious recognition, which highlights Quandela’s significant contributions to quantum computing and strong growth trajectory.

The Champions label, now in its 13th year, recognizes innovative SMEs that demonstrate exceptional potential in strategic deep tech sectors. The selection acknowledges Quandela’s achievements in making quantum computing accessible to industry through ready-to-use quantum computers for datacenters, cloud-accessible quantum processors, and algorithm services.

“We are honored to receive this recognition from Systematic Paris-Region, which validates our pragmatic approach to quantum computing development and our commitment to meeting real industry needs,” said Valérian Giesz, CEO of Quandela. “Joining this select group of Champions who are driving innovation in strategic deep tech sectors reflects the dedication and expertise of our entire team.”

The jury, chaired by Fadwa Sube, particularly praised “the perfect alliance between world-class scientific excellence in quantum computing and the pragmatism and humility of Valérian Giesz and his team,” as well as the company’s step-by-step approach focused on customer needs.

Key achievements that led to this recognition include:
– The successful delivery of quantum computers to OVHcloud and Exaion in France and Canada
– A significant order from EuroHPC JU for a 12-qubit quantum computer, to be delivered by end of 2025
– The launch of the first quantum computer factory in Massy, with a production capacity of 4 quantum computers per year
– The establishment of the world’s first pilot line dedicated to the production of semiconductor-based spin-photon qubit devices

With 110 employees across France, Germany, Canada, and South Korea, Quandela continues to expand its international presence, supported by €65 million in funding raised since its creation in 2017. This recognition reinforces the company’s commitment to making quantum computing accessible to tackle complex industrial and societal challenges.

About Systematic Paris-Region
Systematic is the European Deep Tech hub that has been bringing together and coordinating a community of nearly 900 members since its creation in 2005, including nearly 600 startups, SMEs and mid-caps, 140 large groups, 140 academics, and an investors’ college. The Champions program has recognized 73 innovative companies since 2011, which have collectively raised over €1.7 billion and created more than 11,500 jobs across 35+ countries.